去年下半年至今,中国人民大学高瓴人工智能学院教授卢志武和他的学生高一钊见了150多家VC(风险投资机构)。以ChatGPT走红为分界点,他明显感觉到投资人对大模型创业的态度变得积极甚至是着急,但卢志武依然没拿到VC的投资。
卢志武的多模态大模型项目源起智源,最开始由智源研究院注资3000万元。2021年,他团队研发的多模态大模型项目雏形已现,急于寻找一笔融资支持大模型的深入研发。他曾对风险投资寄望很大,期待获得微软之于OpenAI那样的支持。
在ChatGPT走红之前,卢志武需要反复跟投资人科普大模型是什么以及价值在哪,其中不乏朱啸虎这样的大佬级投资人,但没有人听得懂——他们不理解大模型百亿级别参数意味着什么,更难理解提前几年研发所带来的竞争优势。
“VC永远问我怎么盈利,怎么竞争得过大厂。”卢志武说,头部VC他几乎都见了,主投TMT的主投硬科技VC也见了,但感觉VC们做的功课很少。
在ChatGPT走红之后,他终于不用向投资人科普大模型,但新的问题又来了:如果多模态大模型这么重要,那为什么ChatGPT是单模态的?
卢志武不知道怎么回答。
北京大学信息科学技术学院副教授、智能编程助手aiXcoder创始人李戈对此也感同身受。很多投资人在评估项目时都会向他质疑:既然ChatGPT已经有了程序生成功能,国内团队再做,有什么意义?
很多投资人都会使用最简单的python实现贪吃蛇游戏作为测试用例,但在李戈看来,程序生成是很难的事情,涉及上下文环境,投资人总是把它过于简单化,他们的目光都盯在nl2code(即自然语言转换成代码)上,输入个自然语言输出个代码,然后在那儿比来比去。“这个东西能比得出来谁好谁坏么?”
兜兜转转见了上百个投资人,卢志武终于意识到,VC们把大模型项目当成互联网项目去类比,围绕着商业模式和团队构建打转,“大模型有自己的特殊性,他们不理解,但却很早就达成了某种共识。”
这种共识主要指投资人之间的小圈子文化。卢志武认为,投资人们喜欢交换看法,虽然很多看法大多是错误的,但这些投资人的态度却出奇的一致。
“基金跨周期很难,找benchmark(对标与基准线)是投资人的天性和习惯,所以在上个周期形成的共识范式往往会成为新周期绊脚石。在大模型这样晦涩难懂的前沿领域,当底层范式发生转变,简单地和过去类比没有意义,老一代范式的知识体系和判断标准会变成包袱,投资前沿科技需要开阔思路和技术信仰。”前沿科技基金Capital O的创始合伙人刘大卫这么解释这个现象。
谈了几个月之后,卢志武不再想拿VC的投资,因为他们并不懂大模型。
但还有很多大模型相关的创业者寄希望于通过VC的助力把项目继续下去。界面新闻了解到,红杉中国旗下的创业加速器YUE2月28日开启报名之后,2000个报名项目中有400个是AIGC主题,创下了历史。6月3日,在奇迹创坛2023春季创业营路演上,60家参与公司中有41家为人工智能主题,比去年翻番,其中有39家为大模型相关。
记录屡屡刷新,但大模型创业者们首先需要面对的是投资人比以往都大的认知鸿沟。
犹豫的投资人
很多投资人听完大模型创业的项目之后,不是不想下手,而是不敢下手。
今年春节前后,卢志武和高一钊见投资人的频率明显提升。他们感受到ChatGPT走红之后投资人急迫的心情,但也感受到了他们的犹豫。“很多投资人愿意听我们讲,但不给明确答复。我们催他们回复,他们一般只说在考虑中,或者说等下一轮再看看。”
投资人犹豫的原因是,他们不知道用什么标准去评判眼前的大模型项目是否值得投资。实际上,在移动互联网时代,面对很多新应用和新商业模式,很多投资人也未必听得懂,但他们拥有一个重要决策逻辑——投人。
风险投资就是投人,这个理念由美国风险投资家威廉·德雷帕最早提出,在移动互联网大潮十年黄金期中被屡屡印证。真格基金创始人徐小平的一句名言是,投人,投人,投人,而不是投事、投模式、投方向。
投人背后的逻辑是,早期创业一定需要经过无数试错和调整,只要创始人强大、团队战斗力强,就能走过暴风骤雨,抵达胜利的彼岸。
从移动互联网到硬科技时代,很多早期投资人仍坚持投人。真格基金联合创始人王强在一次媒体交流活动中表示,自己不怎么用ChatGPT, 也不用stability.ai,但仍想赶上这波前所未有的时代变局,用自己过往投人的方式。
实际上,投人的逻辑在国内仍处于概念化阶段。过去三十年间,国内天使投资的失败比例高达90%,风险投资失败比例达70-80%,投人缺乏真正具体的标准,这个逻辑就是风险本身。
无论从个人经历还是团队背景来看,卢志武的项目都可圈可点,但和移动互联网项目不同的是,大模型项目前期需要的资金多很多,很多基金要么投不起,要么非常谨慎。而且,大模型创业是一个10年甚至20年才能看到结果的事情,现在的判断都过于简单。
消费互联网时代的经验不够用了
投行一直是投资圈对信息和风向最敏感的群体,据悉,光源资本看过的大模型相关概念初创项目超过百家,但在其创始人郑烜乐看来,大模型创业是“很偏venture(风险)的领域”,VC目前还是在做尝试性投资。
因为大模型的创业项目对人才密度、资金密度要求极高,跑模型的时候就需要花费千万美金级别的算力投入,而且经历数月。团队要求则是长期在机器学习上有很强的工程创新和实践经验,这类人稀少且昂贵。按照技术难度壁垒,真正有能力做底层技术创业的公司并不多。
“如果高性能算力芯片的供需关系无法改善,可能仍只能供少数公司充分训练,加上大厂布局,独立大模型创业公司资金需求量大、风险始终处在高位。”Capital O创始合伙人刘大卫认为。
实际上,在ChatGPT走红之后,很多从业者也在反思中国为什么没有诞生和OpenAI类似的公司,投资人不懂技术和太擅长投资而更擅长“投机”,被认为是其中一个重要原因。
心得:投资人擅长投机只是一个表象,其背后更深层次的原因是,国内的VC们并没有形成一套完整的投资方法论,他们在投资决策中过分依赖于过往的成功经验。这些成功经验大多来自消费互联网领域,投资决策过程判断所处赛道的市场规模、项目在赛道所处的竞争位次以及能否通过烧钱获取足够市场份额再提价赚钱——本身就是一个投机的过程。
投行一直是投资圈对信息和风向最敏感的群体,据悉,光源资本看过的大模型相关概念初创项目超过百家,但在其创始人郑烜乐看来,大模型创业是“很偏venture(风险)的领域”,VC目前还是在做尝试性投资。